發布時間:2021-08-26 15:04:36來源:魔方格
大數據屬于計算機科學學科領域,指的是通過分析和挖掘全量的非抽樣的數據輔助決策,是近年來一種新興技術,在各行各業中都有著非常廣泛的應用價值,中國互聯網正邁向人工智能時代,大數據已經應用到我們生活的方方面面了。大數據也是考生報考的熱門專業之一,那么大數據要學習哪些知識?下面小編整理了相關內容,一起來看看!
學大數據需要掌握的基礎:
第一:計算機基礎知識。計算機基礎知識對于學習大數據技術是非常重要的,其中操作系統、編程語言和數據庫這三方面知識是一定要學習的。編程語言可以從Python開始學起,而且如果未來要從事專業的大數據開發,也可以從Java開始學起。計算機基礎知識的學習具有一定的難度,學習過程中要重視實驗的作用。
第二:數學和統計學基礎知識。大數據技術體系的核心目的是“數據價值化”,數據價值化的過程一定離不開數據分析,所以作為數據分析基礎的數學和統計學知識就比較重要了。數學和統計學基礎對于大數據從業者未來的成長空間有比較重要的影響,所以一定要重視這兩個方面知識的學習。
第三:大數據平臺基礎。大數據開發和大數據分析都離不開大數據平臺的支撐,大數據平臺涉及到分布式存儲和分布式計算等基礎性功能,掌握大數據平臺也會對于大數據技術體系形成較深的認知程度。對于初學者來說,可以從Hadoop和Spark開始學起。
大數據都需要學什么:
1、Java編程技術
Java編程技術是大數據學習的基礎,Java是一種強類型語言,擁有極高的跨平臺能力,可以編寫桌面應用程序、Web應用程序、分布式系統和嵌入式系統應用程序等,是大數據工程師較喜歡的編程工具,因此,想學好大數據,掌握Java基礎是必不可少的!
2、Linux命令
對于大數據開發通常是在Linux環境下進行的,相比Linux操作系統,Windows操作系統是封閉的操作系統,開源的大數據軟件很受限制,因此,想從事大數據開發相關工作,還需掌握Linux基礎操作命令。
3、Hadoop
Hadoop是大數據開發的重要框架,其核心是HDFS和MapReduce,HDFS為海量的數據提供了存儲,MapReduce為海量的數據提供了計算,因此,需要重點掌握,除此之外,還需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高級管理等相關技術與操作!
4、Hive
Hive是基于Hadoop的一個數據倉庫工具,可以將結構化的數據文件映射為一張數據庫表,并提供簡單的sql查詢功能,可以將sql語句轉換為MapReduce任務進行運行,十分適合數據倉庫的統計分析。對于Hive需掌握其安裝、應用及高級操作等。
5、Avro與Protobuf
Avro與Protobuf均是數據序列化系統,可以提供豐富的數據結構類型,十分適合做數據存儲,還可進行不同語言之間相互通信的數據交換格式,學習大數據,需掌握其具體用法。
6、ZooKeeper
ZooKeeper是Hadoop和Hbase的重要組件,是一個為分布式應用提供一致性服務的軟件,提供的功能包括:配置維護、域名服務、分布式同步、組件服務等,在大數據開發中要掌握ZooKeeper的常用命令及功能的實現方法。
7、HBase
HBase是一個分布式的、面向列的開源數據庫,它不同于一般的關系數據庫,更適合于非結構化數據存儲的數據庫,是一個高可靠性、高性能、面向列、可伸縮的分布式存儲系統,大數據開發需掌握HBase基礎知識、應用、架構以及高級用法等。
8、phoenix
phoenix是用Java編寫的基于JDBC API操作HBase的開源SQL引擎,其具有動態列、散列加載、查詢服務器、追蹤、事務、用戶自定義函數、二級索引、命名空間映射、數據收集、行時間戳列、分頁查詢、跳躍查詢、視圖以及多租戶的特性,大數據開發需掌握其原理和使用方法。
9、Redis
Redis是一個key-value存儲系統,其出現很大程度補償了memcached這類key/value存儲的不足,在部分場合可以對關系數據庫起到很好的補充作用,它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客戶端,使用很方便,大數據開發需掌握Redis的安裝、配置及相關使用方法。
10、Flume
Flume是一款高可用、高可靠、分布式的海量日志采集、聚合和傳輸的系統,Flume支持在日志系統中定制各類數據發送方,用于收集數據;同時,Flume提供對數據進行簡單處理,并寫到各種數據接受方(可定制)的能力。大數據開發需掌握其安裝、配置以及相關使用方法。
11、SSM
SSM框架是由Spring、SpringMVC、MyBatis三個開源框架整合而成,常作為數據源較簡單的web項目的框架。大數據開發需分別掌握Spring、SpringMVC、MyBatis三種框架的同時,再使用SSM進行整合操作。
12、Kafka
Kafka是一種高吞吐量的分布式發布訂閱消息系統,其在大數據開發應用上的目的是通過Hadoop的并行加載機制來統一線上和離線的消息處理,也是為了通過集群來提供實時的消息。大數據開發需掌握Kafka架構原理及各組件的作用和使用方法及相關功能的實現!
13、Scala
Scala是一門多范式的編程語言,大數據開發重要框架Spark是采用Scala語言設計的,想要學好Spark框架,擁有Scala基礎是必不可少的,因此,大數據開發需掌握Scala編程基礎知識!
14、Spark
Spark是專為大規模數據處理而設計的通用的計算引擎,其提供了一個全面、統一的框架用于管理各種不同性質的數據集和數據源的大數據處理的需求,大數據開發需掌握Spark基礎、SparkJob、Spark RDD、spark job部署與資源分配、Spark shuffle、Spark內存管理、Spark廣播變量、Spark SQL、Spark Streaming以及Spark ML等相關知識。
15、Azkaban
Azkaban是一個批量工作流任務調度器,可用于在一個工作流內以一個特定的順序運行一組工作和流程,可以利用Azkaban來完成大數據的任務調度,大數據開發需掌握Azkaban的相關配置及語法規則。
16、Python與數據分析
Python是面向對象的編程語言,擁有豐富的庫,使用簡單,應用廣泛,在大數據領域也有所應用,主要可用于數據采集、數據分析以及數據可視化等,因此,大數據開發需學習一定的Python知識。
想要想成為的大數據技術人才,就必須要經歷學習技術的枯燥乏味的過程。總之,大數據需要學習的技術很多,技術的更新迭代也比較快。學到老活到老,沒有學的完技術,只有一直不懈努力。